Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Nuclear Medicine and Molecular Imaging ; (6): 216-220, 2023.
Article in Chinese | WPRIM | ID: wpr-993581

ABSTRACT

Objective:To establish standard spatial brain template and ROIs template of 11C-methyl- N-2β-carbomethoxy-3β-(4-fluorophenyl)tropane (CFT) PET images for automated quantitative analysis of dopamine transporter (DAT) distribution. Methods:From May 2014 to December 2015, 11C-CFT PET and MRI T 1 brain images of 16 healthy volunteers (3 males, 13 females; age (63.3±6.9) years) from Huashan Hospital, Fudan University were co-registered and smoothed using statistical parametric mapping(SPM)5 software based on MATLAB to create a standard spatial brain template. The ROIs template was established by ScAnVp procedures. These templates were clinically verified by using 11C-CFT PET images of 37 healthy volunteers (23 males, 14 females; age (61.7±7.1) years), 32 Parkinson′s disease (PD) patients (20 males, 12 females; age (61.1±5.4) years), 10 multiple system atrophy with predominant parkinsonism (MSA-P) patients (7 males, 3 females; age (60.8±7.1) years) and 10 progressive supranuclear palsy (PSP) patients (5 males, 5 females; age (58.4±6.1) years) from Huashan Hospital, Fudan University between January 2014 and March 2019. One-way analysis of variance was used to analyze data. Results:Based on the 11C-CFT PET images and MRI T 1 images of healthy volunteers, a standard spatial brain template for normalization of 11C-CFT PET images was created. The ROIs template was established including seven regions: bilateral caudate, anterior putamen, posterior putamen (along the long axis) and the occipital cortex. The ROIs template was accurately aligned in each verification group. The normal reference values of semi-quantitative DAT distribution in caudate, anterior putamen and posterior putamen were obtained (1.84±0.13, 2.18±0.16, 1.77±0.11). The semi-quantitative values of 11C-CFT uptake in each ROI in patients were significantly lower than those in healthy volunteers ( F values: 49.79-283.83, all P<0.05). Conclusion:The established brain templates with accurate spatial alignment for 11C-CFT image analysis can provide foundational tools for the application of 11C-CFT PET imaging in clinical practice and scientific research.

SELECTION OF CITATIONS
SEARCH DETAIL